THE ROCHE SCHOOL CALCULATION POLICY 2023

At the Roche School, we adopt a 'streaming' strategy for the learning of mathematics to enable us to cater for every child's needs and rate of progress individually. We see the progression of calculation strategies as dependent on when each child is ready to move to the next stage, rather than simply by age. As such, the timing of the progression of learning of strategies below is considered a minimum requirement in each age group, with some flexibility both for the most able and those requiring consolidation of mathematical skills.

For an overview of all calculation strategies and when they are required (*mental strategies; ** written methods; ${ }^{* * *}$ inverse operations, estimating and checking answers; ${ }^{* * * *}$ problem solving), see separate Progression Map documents for (1) Addition and Subtraction; (2) Multiplication and Division.

Key skills and timings:

- Mental calculation skills are vital.
- Children need to have secure mental representations of numbers and number patterns. So number bonds to 20 (addition and subtraction, including bridging 10 should be known 'by heart') by KS2
- All times tables and their related divisions should (ideally) be known by the end of Spring Term in Year 4
- Children need the ability to estimate, so ROUNDING skills are developed early. These skills are helpful when attempting more challenging calculation problems.

In order for all children to access mathematical understanding we employ a variety of learning approaches.

UNDERSTANDING CALCULATION
 From CONCRETE, through PICTORIAL to ABSTRACT

The Roche School Calculation Guidelines for Foundation Stage (Reception Class)			
ADDITION	SUBTRACTION	MULTIPLICATION	DIVISION
Children begin to record in the context of play or practical activities and problems.			
Begin to relate addition to combining two groups of objects - Make a record in pictures, words or symbols of addition activities already carried out. - Construct number sentences to go with practical activities - Use of games, songs and practical activities to begin using vocabulary Solve simple word problems using their fingers $5+1=6$ Can find one more to ten. Higher Ability/ Gifted and Talented children progress to using a number line. They jump forwards along the number line using finger. $5+3=8$	Begin to relate subtraction to 'taking away' - Make a record in pictures, words or symbols of subtraction activities already carried out - Use of games, songs and practical activities to begin using vocabulary - Construct number sentences to go with practical activities - Relate subtraction to taking away and counting how many objects are left. $5-1=4$ Can find one less to ten. Higher Ability/ Gifted and Talented Progression: $8-3=5$ Counting backwards along a number line using finger.	Real life contexts and use of practical equipment to count in repeated groups of the same size: - Count in twos; fives; tens Also chanting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Share objects into equal groups Use related vocabulary Activities might include: - \quad Sharing sweets on a child's birthday - Sharing activities in the home corner - Count in tens/twos - Separate a given number of objects into two groups (addition and subtraction objective in reception being preliminary to multiplication and division) Count in twos, tens How many times? How many are left/left over? Group Answer Right, wrong What could we try next? How did you work it out? Share out Half, halve

Key Stage 1

Year		Mental calculation	Written Calculation
		Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2-digit numbers and beginning to read and say numbers above 100 . A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Y2 knowing the pairs of numbers which make all the numbers up to 10 at least. They will also have experienced and been taught pairs to 20. Their knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2 -digit number. Another important conceptual tool is their ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2-digit number. The most important application of this knowledge is their ability to add or subtract any pair of 2-digit numbers by counting on or back in tens and ones. Children may extend this to adding by partitioning numbers into tens and ones. Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will have related this skill to repeated addition. They will have met and begun to learn the associated $2 x, 3 x, 5 x$ and $10 x$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. They will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.	

Year		Mental calculation	Written Calculation							Default for ALL children
	Number bonds knowing all the pairs of numbers which make all the numbers to 12 Count back in ones and tens from any given 2-digit number Subtract a single-digit number from any 2-digit number using number facts, including bridging multiples of 10 , e.g. 56-3, $53-$ 5. Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in tens and ones or by counting up.		Jottings to support informal methods: Bridge through 10 where necessary 32-17 Written recording: $37-12=37-10-2$ $=27-2$ $=25$ Continue to use of a range of concrete and pictorial representations from Year 1, including Bar model to support understanding of difference. (See below).							Know pairs of numbers which make each total up to 10 Subtract a single-digit number from a 2-digit number by counting back in ones Subtract 10 and small multiples of 10 from a 2digit number by counting back in tens

Year		Mental calculation	Written Calculation		Default for ALL children
	¢	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s Begin to count in 3s Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10s count. (E.g. 8 is the fourth number when I count in twos.) Relate division to grouping. (E.g. how many groups of five in fifteen?) Halve numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)	"There are 26 straws. $1 / 2$ of the straws is equal to 13 straws." $\begin{array}{ll} 1 / 2 \text { of } 26=13 & \text { Pupils decode a problem first, represent it using } \\ 26 \div 2=13 & \text { manipulatives and jottings; and finally record it symbolically. } \end{array}$ The importance of the relationship between known multiplication facts and the concept of division are essential for children to link their developing processing skills.		Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Say how many rows in a given array. (E.g. how many rows of 5 in an array of 3×5) Halve numbers to 12 Find $1 / 2$ of amounts

In the lower juniors, children build on the concrete and conceptual understandings they have gained in the Infants to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers. In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies to enable them to discard the 'counting in ones' or fingers-based methods of the infants. In particular, they will learn to add and subtract multiples and near multiples of 10,100 and 1000 , and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced. This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the 12 x 12 table. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing by 5 or multiplying by 20. Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place and two-place decimals (often through use of money), multiplying and dividing whole numbers by 10 and 100 .
EMPHASISE THE PLACE VALUE OF DIGITS WITHIN A NUMBER BEFORE AND DURING ANY FORMAL CALCULATION STRATEGIES.

Know by heart all the division facts derived from the $2 x, 3 x, 4 x, 5 x$, $8 x$ and $10 x$ tables. Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative. Use place value and number facts in mental division. (E.g. $84 \div 4$ is half of 42)
Divide larger numbers mentally by subtracting the tenth multiple, including those with remainders. (E.g. $57 \div$ 3 is $10+9$ as $10 \times 3=30$ and $9 \times 3=27$)
Halve even numbers to 100, halve odd numbers to 20

Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a
whole number.
Make connections and hypothesese based on known facts:

New written methods can be modelled alongside mental or informal methods to ensure understanding.

Introduce 'Chunking' to explain the process of formal short division: 3. Chunking- Using Multiples of the Divisor

```
"I know 6\div3=2,
so 60\div3=20."
"I know 12\div3=4,
so 120\div3=40."
```

$120 \div 3$

$90 \div 5=18$

Begin to introduce formal 'bus stop' division.

Find unit fractions of quantities and begin to find non-unit fractions of quantities

Know by heart the division facts derived from the $2 x, 3 x, 5 x$ and 10x tables Halve even numbers up to 50 and multiples of ten to 100 Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.

$\begin{array}{\|c} \text { Year } \\ 4 \end{array}$	cis	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next hundred, pound and whole number. (E.g. $234+66=300,3.4+$ $0.6=4$) Perform place value additions without a struggle. (E.g. $300+8+$ $50+4000=4358)$ Add multiples and near multiples of 10,100 and 1000. Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. 4004 +156 by knowing that $6+4=10$ and that $4004+150=4154$ so total is 4160)	Column addition for 3-digit, 4-digit numbers and beyond. Begin to use addition with decimals: $\begin{array}{r} 24.5 \\ +17.6 \\ \hline 42.1 \\ \hline 11 \end{array}$ Add like fractions, e.g. $3 / 5+4 / 5=7 / 5=12 / 5$. Be confident with fractions that add to 1 and fraction complements to 1. (E.g. ${ }^{2} / 3+$? $=1$) Use number lines for calculating with time. 1) Holly set off for work at 8:37 am. She arrived at 9:00 am. How long did her journey take? $3+20=23 \mathrm{mins}$		Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add friendly larger numbers using knowledge of place value and number facts Use expanded column addition to add 3 -digit numbers

Subtract any two 2-
digit numbers
Know by heart/quickly derive number bonds to 100
Perform place value subtractions without a struggle. (E.g. 4736 $706=4030$, etc.) Subtract multiples and near multiples of 10 , 100 and 100 Subtract by counting up. (E.g. 503-368 is done by adding: $368+2$ $+30+100+3$ so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts. Subtract $£ 1,10$ p, 1p from amounts of money Find change from $£ 10$, $£ 20$ and $£ 50$.

Use expanded column subtraction for 3-digit and 4-digit numbers for children still grasping the concept.

72 -47

Dienes blocks or place value counters can be used to model calculations and the under-lying place value concepts.

Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100.

Know by heart all the multiplication facts up to 12×12.
Recognise factors up to 12 of two-digit numbers.
Multiply whole numbers and oneplace decimals by 10 , 100, 1000
Multiply multiples of $10,100,1000$ by single digit numbers. (E.g. 300×6 or 4000×8) Use understanding of place value and number facts in mental multiplication. (E.g. 36 $x 5$ is half of 36×10 and $50 \times 60=3000$) Partition 2-digit numbers to multiply by a single-digit number mentally. (E.g. 4×24 as 4×20 and 4×4) Multiply near multiples using rounding. (E.g. 33 $\times 19$ as $33 \times 20-33$) Find doubles to double 100 and beyond using partitioning Begin to double amounts of money. (E.g. $£ 35.60$ doubled $=$ £71.20.)

- multiply two-digit and three-digit numbers by a one-digit number using formal written layout

- Estimate before calculating
- Ensure written methods build on/relate to mental methods (e.g. grid method) based on an understanding of place value
- Use grid and expanded column methods as stepping stones alongside

Know by heart

 multiplication tables up to 10×10 Multiply whole numbers by 10 and 100 Use grid method to multiply a 2-digit or a 3digit number by a number up to and including 6Know by heart all the division facts up to 144 $\div 12$.
Divide whole numbers by 10,100 to give whole number answers or answers with one decimal place Divide multiples of 100 by 1-digit numbers using division facts. (E.g. $3200 \div 8=400$) Use place value and number facts in mental division. (E.g. $245 \div 20$ is double $245 \div 10$) Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $20^{\text {th }}$ multiple as appropriate. (E.g. $156 \div$ 6 is $20+6$ as $20 \times 6=120$ and $6 \times 6=36$) BEFORE moving on to the formal BUS-STOP method.
Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money. (E.g. Half of $£ 52.40=£ 26.20$)

Use a written method to divide a 2-digit or a 3-digit number by a single-digit number.
Give remainders as whole numbers. For children requiring consolidation, refer back to 'chunking': Using Chunking with remainders
$87 \div 4=21$ r 3

For most, formal bus-stop division is expected, leading to higher level calculations by the end of Year 4, beginning of Year 5:

$$
\begin{array}{ll}
846 \div 3=282 & 423 \div 9=47 \\
3 \longdiv { 2 8 2 } & 9 \longdiv { 4 ^ { 4 } 2 ^ { 6 } 3 }
\end{array}
$$

Begin to reduce fractions to their simplest forms.
Find unit and non-unit fractions of larger amounts.
$4 \longdiv { 8 7 }$

- $\quad 40$ (10×4)
- $\quad 40(10 \times 4)$
$\begin{aligned} & 7 \\ & -\quad 4(1 \times 4)\end{aligned}$
3

Know by heart all the division facts up to 100 $\div 10$.
Divide whole numbers by 10 and 100 to give whole number answers or answers with one decimal place Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a whole number. Find unit fractions of amounts

	O	Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or $40,000 \div 8$. In addition, it is in Y 5 and Y 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted. Use number lines for calculating with time.							
$\begin{gathered} \text { Year } \\ 5 \end{gathered}$	cin	Know numbers bonds to 1 and to the next whole number Add to the next 10 from a decimal number, e.g. $13 \cdot 6+6 \cdot 4$ $=20$ Add numbers with two significant digits only, using mental strategies. (E.g. $3.4+$ 4.8 or $23,000+47,000$) Add one or two-digit multiples of 10, 100, 1000, 10,000 and 100,000. (E.g. $8000+7000$ or $600,000+700,000$) Add near multiples of 10,100 , 1000, 10,000 and 100,000 to other numbers. (E.g. 82,472 + 30,004) Add decimal numbers which are near multiples of 1 or 10, including money. (E.g. 6.34 + 1.99 or $£ 34.59+£ 19.95$) Use place value and number facts to add two or more friendly numbers including money and decimals. (E.g. $3+8$ $+6+4+7,0.6+0.7+0.4$, or $2,056+44)$	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of two-place decimal numbers including amounts of money and numbers with different amounts of decimal places: Begin to add related fractions using equivalences. (E.g. $1 / 2+1 / 6=3 / 6+1 / 6$) Choose the most efficient method in any given situation						Add numbers with only 2-digits which are not zeros, e.g. $3.4+$ 5.8 Derive swiftly and without any difficulty number bonds to 100 Add friendly large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4- and 5-digit numbers
					ial representations Use the bar model to reinfore the inverse relationship between addition \& subtraction: This supports problem solving: Sam and Tom have 67.80 between them. If Sam has $f .20$ more than Tom, how much does Tom have?		nar methods $1.6+1.4=3$ Write down three more pairs of decimal numbers that sum to 3	Where needed.	

Subtract numbers with two significant digits only, using mental strategies. (E.g. 6.2 4.5 or $72,000-47,000$) Subtract one or two-digit multiples of 100, 1000, 10,000 and 100,000. (E.g. $8000-3000$ or 600,000-200,000)
Subtract one or two digit near multiples of 100, 1000, 10,000 and 100,000 from other numbers. (E.g. 82,472-30,004) Subtract decimal numbers which are near multiples of 1 or 10, including money. (E.g. 6•34 -1.99 or $£ 34.59$ - $£ 19.95$) Use counting up subtraction, with knowledge of number bonds to $10 / 100$ or $£ 1$, as a strategy to perform mental subtraction. (E.g. £10-£3.45 or 1000-782]
Recognise fraction complements to 1 and to the next whole number. (E.g. $1^{2 / 5}$ + $3 / 5=2) 4-5$

Use compact or expanded column subtraction to subtract numbers with up to 5 digits.

	Consolidate columnar methods, paying particular attention to the occurrence of zeros as place holders.	1 8 67 10 11 -5 4 5 6 1 3 2 5 5	$\begin{array}{r} 1^{7} 8.0^{10} 1 \\ 1 \\ -\quad 5.45 \\ \hline 12.55 \\ \hline \end{array}$

Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000.

Use complementary addition for subtractions of decimals with up to two places incl. amounts of money Begin to subtract related fractions using equivalences. (E.g. $1 / 2-1 / 6=2 / 6$)
Use columnar subtraction including decimals with different numbers of decimal places:

$$
\begin{gathered}
4.2-0.37 \\
3{ }^{\prime \prime 2} 8 \\
-\quad 0.37 \\
\hline 3.83 \\
\hline
\end{gathered}
$$

Choose the most efficient method in any given situation

Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions,
including finding complements to multiples of 1000. (E.g. 3000 -2387 is done by

Know by heart all the
multiplication facts up to 12 x 12.

Multiply whole numbers and one-and two-place decimals by 10, 100, 1000, 10,000
Use knowledge of factors and multiples in multiplication. (E.g. 43×6 is double 43×3, and $28 \times$ 50 is $1 / 2$ of $28 \times 100=1400$) Use knowledge of place value and rounding in mental multiplication. (E.g. 67×199 as $67 \times 200-67$)
Use doubling and halving as a strategy in mental
multiplication. (E.g. $58 \times 5=$ half of 58×10, and 34×4 is 34 doubled twice) Partition 2-digit numbers, including decimals, to multiply by a single-digit number mentally. (E.g. 6×27 as 6×20 (120) plus 6×7 (42) making 162 or 6.3×7 as 6×7 plus 0.3×7) Double amounts of money by partitioning. (E.g. £37.45 doubled $=£ 37$ doubled ($£ 74$) plus 45p doubled (90p) $£ 74.90$)

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4-digit number by a number between 11 and 20 Choose the most efficient method in any given situation

Find simple percentages of amounts (e.g. $10 \%, 5 \%, 20 \%, 155$ and 50%) Begin to multiply fractions and mixed numbers by whole numbers ≤ 10, e.g. $4 \times 2 / 3=8 / 3=2^{2} / 3$.

Know multiplication tables to 11 $\times 11$
Multiply whole numbers and one-place decimals by 10,100 and 1000
Use knowledge of factors as aids to mental multiplication. (E.g. 13 $x 6=$ double 13×3 and 23×5 is $1 / 2$ of 23×10
Use grid method to multiply numbers with up to 4-digits by one-digit numbers.
Use grid method to multiply 2digit by 2-digit numbers.

Know by heart all the division

facts up to $144 \div 12$.
Divide whole numbers by 10 , $100,1000,10,000$ to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies. (E.g. $34 \div 5$ is $(34 \div 10) \times 2$) Use knowledge of multiples and factors, also tests for divisibility, in mental division. (E.g. $246 \div 6$ is $123 \div 3$ and we know that 525 divides by 25 and by 3)
Halve amounts of money by partitioning. (E.g. Half of $£ 75.40$ $=$ half of $£ 75$ (37.50) plus half of 40 p (20p) which is $£ 37.70$) Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $100^{\text {th }}$ multiple as appropriate. (E.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36$; $312 \div 3$ is $100+$ 4 as $100 \times 3=300$ and $4 \times 3=$ 12)

Reduce fractions to their simplest form.

Use short division to divide a number with up to 4 digits by a number ≤ 12.
Give remainders as whole numbers or as fractions.

$$
\begin{array}{ll}
846 \div 3=282 & 423 \div 9=47 \\
3 \longdiv { 2 8 2 } & 9 \longdiv { 4 ^ { 4 } 2 ^ { 6 3 } }
\end{array}
$$

Know by heart division facts up
to $121 \div 11$
Divide whole numbers by 10 , 100 or 1000 to give answers with up to one decimal place. Use doubling and halving as mental division strategies Use efficient chunking to divide numbers ≤ 1000 by 1 -digit numbers.
Find unit fractions of 2 and 3 diigt numbers

Know by heart number bonds

 to 100 and use these to derive related facts. (E.g. $3.46+0.54=$ 4)Derive quickly and without difficulty, number bonds to 1000
Add small and large whole numbers where the use of place value or number facts makes the calculation do-able 'in our heads'. (E.g. 34,000 + 8000.)

Add multiples of powers of ten and near multiples of the same. (E.g. $6345+199$.)

Add negative numbers in a context such as temperature where the numbers make sense.
Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 (E.g. $4.5+6.3$ or $0.74+0.33$) Add positive numbers to negative numbers, e.g. calculate a rise in temperature, or continue a sequence beginning with a negative number

Use column addition to add numbers with up to 5 digits (using establishes methods from previous years).
Use column addition to add decimal numbers with up to 3-digits, including numbers with different amounts of digits in decimal places and different whole numbers:

$$
23 \cdot 6+1 \cdot 876+34 \cdot 28
$$

$$
\begin{array}{r}
\text { To. thth } \\
23.6 \\
1.876 \\
+34.28 \\
\hline 59.756 \\
\hline
\end{array}
$$

Add mixed numbers and fractions with different denominators.

Use number lines for calculating with time. (see Year 4 e.g.)

Derive swiftly and without difficulty, number bonds to 100 Use place value and number facts to add friendly large or decimal numbers, e.g. 3.4 + 6.6 or $26,000+5,400$
Use column addition to add numbers with up to 4-digits. Use column addition to add pairs of two-place decimal numbers.

Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition. (E.g. $1000-654$ as $46+300$ in our heads
Use number bonds to 1 and 10 to perform mental subtraction of any pair of one-place or twoplace decimal numbers using complementary addition and including money. (E.g. $10-3.65$ as $0.35+6$, $£ 50-£ 34.29$ as 71 p +£15)
Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to two places. (E.g. 467,900 3,005 or 4.63-1.02)
Subtract multiples of powers of ten and near multiples of the same.
Subtract negative numbers in a context such as temperature where the numbers make sense.

Use column subtraction to subtract numbers with up to 6 digits.

$\begin{aligned} & 932-457 \text { becomes } \\ & \begin{array}{l} 8 \\ 9^{12} 3^{2} \\ -\quad 4 \\ -\quad 5 \\ \hline 475 \end{array} \\ & \hline 47 \end{aligned}$	Consolidate columnar methods, paying particular attention to the occurrence of zeros as place holders.	1 8 6 10 11 -5 4 5 6 1 3 2 5 5	

Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10,000 .
Use complementary addition for subtractions of decimal numbers with up to three places including money.
Use columnar subtraction of increasing complexity, including decimals with different numbers of decimal places:

$$
\begin{gathered}
4.2-0.37 \\
3 .^{\prime 2} 8^{\prime} 0 \\
-0.37 \\
\hline 3.83 \\
\hline
\end{gathered}
$$

Subtract mixed numbers and fractions with different denominators.

Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition. (E.g. $1000-654$ as $46+300$ in our heads.)
Use complementary addition for subtraction of integers up to 10,000. E.g. $2504-1878$

Use complementary addition for subtractions of one-place decimal numbers and amounts of money. (E.g. $£ 7.30-£ 3.55$)

Know by heart all the
multiplication facts up to 12 x 12.

Multiply whole numbers and decimals with up to three places by 10,100 or 1000 , e.g. $234 \times 1000=234,000$ and 0.23 $x 1000=230$)
Identify common factors, common multiples and prime numbers and use factors in mental multiplication. (E.g. 326 x 6 is 652×3 which is 1956) Use place value and number facts in mental multiplication. (E.g. $40,000 \times 6=24,000$ and $0.03 \times 6=0.18$)
Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 (E.g. 28×25 is $1 / 4$ of $28 \times 100=700$) Use rounding in mental multiplication. (34×19 as ($20 \times$ 34) - 34)

Multiply one and two-place decimals by numbers up to and including 10 using place value and partitioning. (E.g. 3.6×4 is $12+2.4$ or 2.53×3 is $6+1.5+$ 0.09)

Double decimal numbers with up to 2 places using partitioning
e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
Use long multiplication to multiply a 2-digit by a number with up to 4 digits
Use short multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money.
Use long multiplication to multiply whole numbers by numbers including decimals:

Multiply fractions and mixed numbers by whole numbers.
Multiply fractions by proper fractions.
Use percentages for comparison and calculate simple percentages.

Know by heart all the multiplication facts up to $12 \times$ 12.

Multiply whole numbers and one-and two-place decimals by 10, 100 and 1000.
Use an efficient written method to multiply a one-digit or a teens number by a number with up to 4-digits by partitioning (grid method).
Multiply a one-place decimal number up to 10 by a number ≤ 100 using grid method.

Know by heart all the division

 facts up to $144 \div 12$.Divide whole numbers by powers of 10 to give whole number answers or answers with up to three decimal places.
Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div 6$ is $219 \div 3$ which is 73)
Use tests for divisibility to aid mental calculation. Use doubling and halving as mental division strategies, e.g. to divide by 2, 4, 8, 5, 20 and 25. (E.g. $628 \div 8$ is halved three times: 314, 157, 78.5) Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6=0.4$ or $0.65 \div 5=$ $0.13, £ 6.33 \div 3=£ 2.11$) Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43) Know and use equivalence between simple fractions, decimals and percentages, including in different contexts. Recognise a given ratio and reduce a given ratio to its lowest terms.

Consolidate all of the division work established in previous years.

Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers.

$$
432 \div 16=27
$$

Give remainders as whole numbers or as fractions or as decimals
Divide a one-place or a two-place decimal number by a number ≤ 12 using multiples of the divisors. Divide proper fractions by whole numbers.

Know by heart all the division

 facts up to $144 \div 12$.Divide whole numbers by 10 , 100,1000 to give whole number answers or answers with up to two decimal places.
Use efficient chunking involving subtracting powers of 10 times the divisor to divide any number of up to 1000 by a number ≤ 12. (E.g. $836 \div 11$ as $836-770$
(70×11) leaving 66 which is 6×11. So that we have $70+6=76$ as the answer).
Divide a one-place decimal by a number ≤ 10 using place value and knowledge of division facts.

